
ANSI C Cryptographic API Profile
for AES Candidate Algorithm Submissions

Revision 5: April 15, 1998

1. Overview

This document specifies the ANSI C interface profile for implementations of AES
candidate algorithms. C implementations shall support the syntax and parameterization of
the interface profile messages as described in this API. The functions specified in this API
have return values listed that are largely used to supply error codes in the event of
incomplete execution of the routines. The error values listed are not meant to be an
exhaustive list. If additional error codes are useful for your implementation, please
provide them.

2. Key Generation Interface

Each AES submitter will be required to implement this interface because NIST anticipates
that some candidate algorithms will have unique requirements for and methods of key
generation. Implementations shall support key of lengths of 128, 192, and 256-bit.
Additionally, if an algorithm can support other key sizes, these should be supported in the
code as well.

The ANSI C key generation programming interface uses one structure and one routine to
manipulate keys. The structure, keyInstance, contains the length of the key, the raw key
material, a direction flag that indicates if the key will be used for encryption or decryption,
and any algorithm specific key information such as the key schedule used in DES. All
implementations must be sure to document any algorithm-specific parameters and
their use.

The key function, makeKey(), is called with the appropriate parameters which get loaded
into the keyInstance structure. These parameters are then used to perform any key
specific setup that is necessary, e.g., allocation and initialization of a key schedule table.

typedef struct {
BYTE direction;
int keyLen;
char keyMaterial[MAX_KEY_SIZE+1];
/* The following parameters are algorithm dependent */
} keyInstance;

(4/15/98 – changed BYTE *keyMaterial to char
keyMaterial[MAX_KEY_SIZE+1] to avoid malloc and free calls.)

2

v makeKey

 int makeKey(keyInstance *key, BYTE direction, int keyLen, char
*keyMaterial)

 Initializes a keyInstance with the following information:

• direction: the key is being setup for encryption or decryption
• keyLen: The key length (128, 192, 256, or others) of the key, and
• keyMaterial: The raw key data.

 Parameters:

 key: a structure that holds the keyInstance information
 direction: the key is being setup for encryption or decryption
 keyLen: an integer value that indicates the length of the key in bits.
 keyMaterial: the raw key information (keyLen/4 ASCII characters
representing the hex values for the key). For example,
“0123456789abcdef0123456789abcdef" is the string for a key with the
binary value:
0000000100100011010001010110011110001001101010111100…

 Returns:

 TRUE - on success
 BAD_KEY_DIR - direction is invalid (e.g., unknown value)
 BAD_KEY_MAT - keyMaterial is invalid (e.g., wrong length)

 3. Cipher Object Interface

 The ANSI C cipher programming interface uses one structures and a set of functions to
manipulate cipher data. The structure, cipherInstance, contains fields for the mode being
used (e.g., Electronic Codebook, Cipher Block Chaining, or 1-bit Cipher Feedback) and
an initialization vector necessary for some modes. Additional algorithm-specific
parameters may be added if necessary. All implementations must be sure to document
any algorithm-specific parameters and their use.

 The cipher routines get used in following way. First, cipherInit() is called with the
appropriate parameters to be loaded into the cipherInstance structure. cipherInit() will
perform any additional algorithm setup that is required, e.g., establishing an Initialization
Vector. Then full blocks of data are supplied to either blockEncrypt() or blockDecrypt()
for ciphering. The data passed to blockEncrypt() and blockDecrypt() must be integral
block units, i.e., n*blocksize bits long (this will allow for more accurate testing of bulk
encryption times). If any algorithm specific parameters are needed, they should be loaded
before calling cipherInit().

3

 typedef struct {

 BYTE mode;
 BYTE IV[MAX_IV_SIZE];
 /* Add any algorithm specific parameters needed here */

 } cipherInstance;

 (4/15/98 – changed BYTE *IV to BYTE IV[MAX_IV_SIZE] to avoid malloc and
free calls.)

v cipherInit

 int cipherInit(cipherInstance *cipher, BYTE mode, char *IV)

 Initializes the cipher with the mode and, if present, sets the Initialization
Vector. If any algorithm specific setup is necessary, cipherInit() must take
care of that as well. The IV parameter passed to cipherInit() is an ASCII
hex string representation of the IV, i.e. the IV passed as a parameter will
typically be 32 bytes long. The IV field of the cipherInstance structure is
the binary value of the IV, i.e. it will typically be 16 bytes long.

 Algorithm specific parameters must be loaded into the cipherInstance
structure before calling cipherInit(). For example, if the algorithm can use
other block sizes than 128-bits, a field should be added to the
cipherInstance structure and the value being used should be loaded into the
cipher parameter before calling cipherInit().

 Parameters:

 cipher – the cipherInstance being loaded
 mode - the operation mode of this cipher (this is one of
MODE_ECB, MODE_CBC, or MODE_CFB1)
 IV - the cipher initialization vector, necessary for some modes

 Returns:

 TRUE - on success
 BAD_CIPHER_MODE - the mode passed is unknown.

v blockEncrypt

 int blockEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int
inputLen, BYTE *outBuffer)

 Uses the cipherInstance object and the keyInstance object to encrypt one
block of data in the input buffer. The output (the encrypted data) is
returned in outBuffer, which is the same size as inputLen. The routine

4

returns the number of bits enciphered. inputLen will typically be 128 bits,
but some algorithms may handle additional block sizes. Additionally, it is
acceptable to use this routine to encrypt multiple “blocks” of data with one
call. For example, if your algorithm has a block size of 128 bits, it is
acceptable to pass n*128 bits to blockEncrypt().

 (4/15/98 – Allow blockEncrypt() to handle an integral number of
algorithm blocks in one call.)

 Parameters:

 cipher – the cipherInstance to be used
 key – the ciphering key
 input - the input buffer
 inputLen - the input length, in bits
 outBuffer – contains the encrypted data

 Returns:

 The number of bits ciphered, or
 BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
 BAD_KEY_MATERIAL – direction not set for DIR_ENCRYPT

v blockDecrypt

int blockDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input, int
inputLen, BYTE *outBuffer)

Uses the cipherInstance object and the keyInstance object to decrypt one
block of data in the input buffer. The output (the decrypted data) is
returned in outBuffer, which is the same size as inputLen. The routine
returns the number of bits deciphered. inputLen will typically be 128 bits,
but some algorithms may handle additional block sizes. Additionally, it is
acceptable to use this routine to decrypt multiple “blocks” of data with one
call. For example, if your algorithm has a block size of 128 bits, it is
acceptable to pass n*128 bits to blockDecrypt().

(4/15/98 – Allow blockDecrypt() to handle an integral number of
algorithm blocks in one call.)

Parameters:
cipher – the cipherInstance to be used
key – the ciphering key
input - the input buffer
inputLen - the input length, in bits
outBuffer – contains the decrypted data

5

Returns:
The number of bits ciphered, or
BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
BAD_KEY_MATERIAL – direction not set for DIR_DECRYPT

6

/* aes.h */

/* AES Cipher header file for ANSI C Submissions
 Lawrence E. Bassham III
 Computer Security Division
 National Institute of Standards and Technology

 This sample is to assist implementers developing to the
Cryptographic API Profile for AES Candidate Algorithm Submissions.
Please consult this document as a cross-reference.

 ANY CHANGES, WHERE APPROPRIATE, TO INFORMATION PROVIDED IN THIS FILE
MUST BE DOCUMENTED. CHANGES ARE ONLY APPROPRIATE WHERE SPECIFIED WITH
THE STRING "CHANGE POSSIBLE". FUNCTION CALLS AND THEIR PARAMETERS
CANNOT BE CHANGED. STRUCTURES CAN BE ALTERED TO ALLOW IMPLEMENTERS TO
INCLUDE IMPLEMENTATION SPECIFIC INFORMATION.
*/

/* Includes:
Standard include files

*/

#include <stdio.h>

/* Defines:
Add any additional defines you need

*/

#define DIR_ENCRYPT 0 /* Are we encrpyting? */
#define DIR_DECRYPT 1 /* Are we decrpyting? */
#define MODE_ECB 1 /* Are we ciphering in ECB mode? */
#define MODE_CBC 2 /* Are we ciphering in CBC mode? */
#define MODE_CFB1 3 /* Are we ciphering in 1-bit CFB mode?
*/
#define TRUE 1
#define FALSE 0

/* Error Codes - CHANGE POSSIBLE: inclusion of additional error codes
*/
#define BAD_KEY_DIR -1 /* Key direction is invalid, e.g.,

unknown value */
#define BAD_KEY_MAT -2 /* Key material not of correct

length */
#define BAD_KEY_INSTANCE -3 /* Key passed is not valid */
#define BAD_CIPHER_MODE -4 /* Params struct passed to

cipherInit invalid */
#define BAD_CIPHER_STATE -5 /* Cipher in wrong state (e.g., not

initialized) */

/* CHANGE POSSIBLE: inclusion of algorithm specific defines */
#define MAX_KEY_SIZE 64 /* # of ASCII char’s needed to
 represent a key */
#define MAX_IV_SIZE 16 /* # of bytes needed to
 represent an IV */

/* Typedefs:

Typedef'ed data storage elements. Add any algorithm specific
parameters at the bottom of the structs as appropriate.
*/

7

typedef unsigned char BYTE;

/* The structure for key information */
typedef struct {
 BYTE direction; /* Key used for encrypting or decrypting? */
 int keyLen; /* Length of the key */
 char keyMaterial[MAX_KEY_SIZE+1]; /* Raw key data in ASCII,
 e.g., user input or KAT values */
 /* The following parameters are algorithm dependent, replace or

 add as necessary */
 BYTE *KS; /* (example)Pointer to a Key Schedule, a la

DES */
 } keyInstance;

/* The structure for cipher information */
typedef struct {
 BYTE mode; /* MODE_ECB, MODE_CBC, or MODE_CFB1 */
 BYTE IV[MAX_IV_SIZE]; /* A possible Initialization Vector for

 ciphering */
 /* Add any algorithm specific parameters needed here */
 int blockSize; /* Sample: Handles non-128 bit block sizes
 (if available) */
 } cipherInstance;

/* Function protoypes */
int makeKey(keyInstance *key, BYTE direction, int keyLen,

char *keyMaterial);

int cipherInit(cipherInstance *cipher, BYTE mode, char *IV);

int blockEncrypt(cipherInstance *cipher, keyInstance *key, BYTE *input,
int inputLen, BYTE *outBuffer);

int blockDecrypt(cipherInstance *cipher, keyInstance *key, BYTE *input,
int inputLen, BYTE *outBuffer);

